Hygrothermal performance of ventilated attic in marine climate under different ceiling air tightness

Document
Contributors
Abstract
14th International Conference on Indoor Air Quality and Climate (Indoor Air 2016), July 3-8, 2016, Ghent, Belgium. An indoor to attic air leakage and vice-versa significantly affect indoor air, thermal comfort and the hygrothermal performance in both living space and unconditioned space. In cold and marine climates an air leakage from living space to an attic brings a relatively high relative humidity to the attic space. This effect is primarily responsible for condensation in attic structural parts such as roof sheathings. In this paper, the hygrothermal performance of a ventilated attic in wet costal climates under different ceiling air leakage is studied. A benchmarked whole building Heat-Air-Moisture model named HAMFit is used to study hygrothermal performance of ventilated attics in marine climates. The attic is modelled as 2-dimensional geometry with coupled heat transfer, moisture transport and a turbulence Computational Fluid Dynamics through attic space and porous structural parts of the attic. A vent ratio of 1/300 and three types normalized leakage area (tight, normal and leaky) are used to analyse how the moisture transport behaves in ventilated space. A winter weather data of city of Vancouver, BC is used to represent a wet marine climate. Our findings show specific locations in the attic structure are more exposed to moisture related problems and the air circulation and temperature distribution due to ventilation under multiple ceiling air leakage scenarios are presented. Hygrothermal performance of ventilated attic in marine climate under different ceiling air tightness.,Conference paper,Published.
Subject (Topical)

Refine your search

Note
14th International Conference on Indoor Air Quality and Climate
Publisher
International Society of Indoor Air Quality and Climate
Type
Language
Rights
Copyright © Emishaw Iffa, Fitsum Tariku.