Assessing the risk of lead exposure to children from drinking water in Metro Vancouver child care facilities

Document
Contributors
Thesis advisor: Heacock, Helen
Contributor: Afshari, Reza
Abstract
BACKGROUND: Environmental lead exposure has been a concern since the early 1970's. With the reduction of airborne lead for inhalation, ingestion from food and water has become the major route of exposure leading to elevated blood lead levels. Previous research and the recent lead contamination of drinking water in Flint, Michigan demonstrate the vulnerability of young children and potential for exposure through drinking water. The purpose of this study was to assess and characterize the risk of lead contamination of drinking water for Metro Vancouver-area early childhood care facilities, and the effect of flushing fixtures as a control measure. METHOD: 91 drinking water samples were collected from various fixtures at 16 child care facilities at progressive time points to observe the effects of flushing and re-stagnation on total dissolved lead content. Analysis was performed using Varian AAS-240 coupled with GTA-120 graphite furnace atomic absorption spectroscopy. Results were analysed statistically using Excel 2010 and SAS/STAT® 14.2 software with SAS Studio 3.6 interface. RESULTS: The mean (SD, min-max) lead concentrations of the water samples were 0.69 (2.32, 0.1-11.27) μg/L at zero minutes of flushing, 0.21 (0.44, 0.1-2.19) μg/L after one minute of flushing, 0.15 (0.17, 0.1- 0.87) μg/L after five minutes of flushing, 0.18 (0.17, 0.1 -0.64) μg/L after re-stagnation, and 0.31 (1.20, 0.1-11.27) μg/L overall. One outlier sample had a lead concentration of 11.27 μg/L, which exceeded Health Canada's maximum allowable concentration of 10 μg/L. The decrease in mean lead concentration between zero minutes and one minute of flushing was statistically significant (p=0.0020). CONCLUSIONS: The results indicate that lead contamination of drinking water in child care facilities is present but below regulatory action levels under normal circumstances. The flushing of fixtures for at least one minute was shown to be effective in lowering lead concentrations further. Efforts should be taken to identify facilities at higher risk of lead contamination and to educate operators of flushing as an effective control measure.

Refine your search

Note

Project submitted in partial fulfillment of the requirement for the degree of Bachelor of Technology in Environmental Health, British Columbia Institute of Technology, 2017.

Degree granted
Bachelor of Technology (BTech) in Environmental Health
Publisher
British Columbia Institute of Technology
Number of pages
15 pages
Type
Form
Language
Rights

This license enables reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator. CC BY-NC-ND includes the following elements: BY: credit must be given to the creator. NC: Only noncommercial uses of the work are permitted. ND: No derivatives or adaptations of the work are permitted. https://creativecommons.org/licenses/by-nc-nd/4.0/